УДК 546.26:535.215

МОДЕЛИ ФОТОПРОВОДИМОСТИ СЛОИСТЫХ МОЛЕКУЛЯРНЫХ КОМПЛЕКСОВ ФУЛЛЕРЕНОВ

© Д.В. Лопатин

Ключевые слова: фуллерены; электронные свойства; фотопроводимость; DFT. На основе полученных теоретических результатов об электронных свойствах рассмотрены возможные модели фотопроводимости и родственных явлений в слоистых молекулярных комплексах на основе фуллерена С ₆₀. Показано, что наиболее вероятным механизмом образования свободных носителей заряда является диссоциация СТ-экситонов. Экситонные состояния образуются за счет межмолекулярный переноса заряда с близлежащих НОМО и LUMO орбиталей, благодаря перекрыванию π-орбиталей молекул донора и фуллерена в комплексе.

ВВЕДЕНИЕ

Как следует из работ, посвященных исследованию фотопроводимости фуллерита С₆₀ [1] и слоистых комплексов фуллерена С₆₀ с органическими донорами Вz₄ВТРЕ·С₆₀ [2], ТМРDА·С₆₀ [3] и LCV·С₆₀ [4], ТВРDA· C_{60} [5] и металлорганическими донорами [6, 7], в исследуемых материалах не происходит прямого межзонного поглощения света, приводящего к появлению свободных электронов и дырок. Фототок обусловлен движением зарядов, образующихся в результате диссоциации экситонных состояний, причем мультиплетность последних существенно влияет на скорость процессов, которые проходят за времена, существенно меньшие, чем время спин-решеточной релаксации [1, 5, 8]. В случае отсутствия надежных сведений об электронной структуре и определении механизмов образования экситонных состояний необходимо привлекать дополнительные данные. Цель данной работы - провести теоретические расчеты, направленные на определение механизма фотопроводимости в слоистых молекулярных комплексах фуллеренов.

МАТЕРИАЛЫ И МЕТОДИКА РАСЧЕТА

В качестве объектов исследования были выбраны следующие молекулярные кристаллы фуллеренов C_{60} с фотоактивными донорами: органические (TBPDA – N, N, N', N'-тетрабензил-п-фенилендиамин; TMPDA – N, N, N', N'-тетраметил-п-фенилендиамин; LMG – 4, 4"-бензолидин (N, N-диметиланилин («лейко-малахит зеленый»); LCV – 4, 4', 4"-метилдинтрис (N, N-диметиланилин) («лейко-кристаллический фиолетовый»); Bz₄BTPE – тетрабензол (1,2-бис[4H-тиопиран-4-или-ден]этен)) и металлорганические (Cu_{II}(Etdtc)₂ – дитио-карбамат двухвалентной меди).

Процедура оптимизации геометрических параметров производилась методом теории функционала плотности (DFT) с использованием трехпараметрического гибридного функционала Беке [9] и корреляционного функционала Ли, Янга, Пара [10] (метод B3LYP). Атомные орбитали описывались $6-311G^{++}$ базисным набором с добавлением поляризующих атомных *d*, *f*орбиталей. Данный базис наиболее корректно определен для атомов в ряду «H-Kr» [11]. Все атомы исследуемых комплексов лежат в данном ряду. Критерием прекращения вычислительных итераций было достижение среднеквадратичным градиентом (RMS-gradient) стандартной для многих квантово-химических пакетов величины 10^{-5} – 10^{-8} а. u. Расчеты возбужденного состояния – в рамках метода, зависящего от времени функционала плотности TD-DFT. Для расчетов использовали программный пакет GAUSSIAN 03 [12].

РЕЗУЛЬТАТЫ

После процедуры оптимизации геометрических параметров молекулярных комплексов были проведены квантово-механические расчеты одноэлектронного спектра, определена энергия молекулярных орбиталей. На основе модельных данных все комплексы можно отнести к полупроводникам (табл. 1). Величина зазора НОМО–LUMO (ΔE) для исследованных молекулярных комплексов с органическими донорами имеет значения 1,22–1,73 эВ и меньше, чем в фуллерене С₆₀. Для изолированных молекул доноров моделирование дает величину $\Delta E_D = 2,94-4,72$ эВ, что значительно больше, чем в молекулярном комплексе.

При сравнении теоретических энергетических спектров молекулярных орбиталей молекул донора, комплекса и фуллерена видно, что комплексы TBPDA·C₆₀, TMPDA·C₆₀, LMG·C₆₀, LCV·C₆₀, Bz4BTPE·C₆₀ и {Cu_{II}(Etdtc)₂}₂·C₆₀ имеют более тонкую электронную структуру. Наблюдается смещение и увеличение числа линий в спектрах комплексов по сравнению со спектрами индивидуальных молекул доноров. Обнаружено, что электронная плотность НОМО практически полностью локализована на молекуле донора, а LUMO – на остове фуллерена C₆₀ (хотя имеются и малые вклады в формирование орбиталей НОМО – электронов C₆₀ и LUMO – π -электронов донора).

Таблица 1

Величина зазора HOMO-LUMO

N⁰	Молекула/комплекс	ΔE , $3B$
1	C ₆₀	1,871
2	TMPDA	4,141
	TMPDA	4,420
3	LMG	4,729
4	LCV	4,279
5	Bz ₄ BTPE	2,943
6	$Cu_{II}(Etdtc)_2$	3,882
7	TMPDA [·] C ₆₀	1,265
8	TBPDA [·] C ₆₀	1,215
9	LMG [·] C ₆₀	1,450
10	LCV·C ₆₀	1,499
11	Bz ₄ BTPE [·] C ₆₀	1,731
12	$\{Cu_{II}(Etdtc)_2\}_2 \cdot C_{60}$	2,177

ОБСУЖДЕНИЕ

Образование экситонных состояний в слоистых молекулярных комплексах с оптически активными органическими и металлорганическими донорами можно представить в виде четырех наиболее вероятных моделей (рис. 1).

Модель 1. Фотовозбуждение донора светом с энергией фотонов большей, чем разница энергий его НОМО и LUMO уровней с последующим переносом электрона с возбужденной молекулы донора на молекулу фуллерена (последовательные процессы « A_1 » и « A_2 » на рис. 1). Данный электронный переход может приводить к образованию промежуточных метастабильных экситонных состояний, например, в композитах проводящих полимеров с C₆₀ [13].

Модель 2. Перенос электрона с НОМО донора на НОМО возбужденной молекулы C_{60} («В₁»), поскольку в возбужденном состоянии акцепторные свойства фуллерена выражены ярче, чем в основном состоянии. В данном случае могут реализоваться дипольноразрешенные внутримолекулярные переходы в молекуле C_{60} с энергией 3,58 и 4,77 эВ («В⁴» на рис. 1) [14].

Рис. 1. Схема возможных электронных переходов в молекулярных комплексах на основе фуллерена C_{60}

Модель 3. Межмолекулярный оптический переход между НОМО и LUMO соседних молекул фуллерена (процесс «С») также может приводить к появлению экситонных состояний (СТ-экситонов) с энергией образования 2,64 эВ [15]. При этом электрон и дырка локализованы на разных молекулах С₆₀.

Модель 4. Прямой межмолекулярный перенос заряда с НОМО донора на LUMO фуллерена (процесс «СТ») благодаря перекрыванию *π*-орбиталей молекул донора и фуллерена.

Основываясь на полученных теоретических результатах, рассмотрим применимость моделей фотопроводимости и родственных явлений в исследуемых молекулярных кристаллах на основе фуллеренов. По результатам моделирования величина зазора НОМО-LUMO (ΔE_D) в молекуле донора значительно на 1,2-3,2 эВ превосходит тот же параметр молекулярного комплекса ΔE_C . При этом величина энергетического зазора НОМО-LUMO во всех исследованных молекулярных комплексах меньше, чем в фуллерене ΔE_F и значительно меньше энергии дипольно-разрешенных внутримолекулярных переходов в фуллерене (E_d). Таким образом, ввиду соотношения $\Delta E_C < \Delta E_F << (E_d, E_D)$ представляется маловероятными образование экситонных состояний, связанных с реализацией механизмов 1–3 (условные обозначения « A_1/A_2 », « B_1/B_1^1 », «С»). В пользу механизма 4 (условное обозначение перехода «СТ») говорит тот факт, что по результатам моделирования в исследуемых комплексах электронная плотность НОМО практически полностью локализована на молекуле донора, а LUMO – на каркасе фуллерена C₆₀ [16].

С учетом вышесказанного и результатов работ [17– 19] механизм фотопроводимости и родственных явлений может быть представлен следующим образом. Движущиеся фотоны создают переменные электрические поля, которые могут вызывать электронные переходы на более высокие уровни энергии. Первоначально образуется возбужденное состояние – *плазмон*, т. е. состояние, в котором одновременно возбуждено много электронов. За времена порядка 10⁻¹⁵ с плазмон распадается, при этом молекула переходит в сверхвозбужденное состояние с последующей автоионизацией с эффективностью около 80 %. Разница уровней энергии между молекулярными орбиталями донора и акцептора обеспечивает движущую силу для элементарного переноса заряда (процесс «СТ», рис. 1).

Вследствие малой диэлектрической проницаемости в органических материалах ($\varepsilon ~ 3-4$) кулоновски связанные электрон-дырочные пары на расстоянии порядка межмолекулярных контактов (0,26–0,35 нм) [16, 20] имеют энергию связи 0,5–1 эВ [21]. Так как разница энергий НОМО–LUMO больше, чем энергия связи экситона, происходит субпикосекундный перенос заряда от донора к акцептору. Происходит образование нейтрального экситонного состояния с переносом заряда (СТ-экситона). Отметим, что по результатам расчетов возбужденных состояний молекулярных комплексов фуллеренов к образованию СТ приводят не только переходы типа НОМО–LUMO, но и ряда близлежащих к ним орбиталей [22].

Мигрирующие экситоны в кристаллах участвуют в двух конкурирующих процессах: распад на свободные носители заряда и взаимодействие с примесными центрами или дефектами. Процесс взаимодействия экситонов со структурными несовершенствами затрудняет движение экситона и стимулирует его преждевременную нефотоактивную аннигиляцию. Однако вероятность аннигиляции ниже, чем прямой распад экситона. За счет пространственной делокализации электрона на объемной молекуле C₆₀ и дырки на акцепторе и последующего движения электрона по фуллереновому слою вследствие эффективного перекрывания молекулярных орбиталей соседних молекул происходит распад СТэкситона и образование свободных носителей зарядов с большим временем жизни.

ЛИТЕРАТУРА

- Golovin Yu.I., Lopatin D.V., Umrikhin A.V., Nikolaev R.K., Shmurak S.Z. Photoconductivity Spectrum of C₆₀ Single Crystals Placed in a Magnetic Field // Doklady Physics. 2002. V. 47. № 12. P. 849-851
- Konarev D.V., Khasanov S.S., Saito G., Litvinov A.L., Lyubovskaya R.N., Lopatin D.V., Rodaev V.V., Umrikhin A.V., Nakasuji K. Synthesis, crystal structure and photoconductivity of new molecular complex of C₆₀ with tetrabenzol (1,2-bis[4h-thiopyran-4-ylidene]ethene): BZ₄BTPE C₆₀ // Journal of Physics and Chemistry of Solids. 2005. V. 66. № 5. P. 711-715.
- Golovin Yu.I., Lopatin D.V., Rodaev V.V, Konarev D.V., Litvinov A.L, Lyubovskaya R.N. On the photoconductivity of layered molecular complex of fullerene C₆₀ with saturated amine TMPDA // Phys. Stat. Sol. (rrl). 2006. V. 1. P. 56-58.
- Golovin Yu.I., Lopatin D.V., Rodaev V.V., Konarev D.V, Litvinov A.L., Lyubovskaya R.N. Photoconductivity of crystalline molecular complex of fullerene C₆₀ with amine LCV // Phys. Stat. Sol. (b). 2006. V. 243. P. 78-80.
- Lopatin D.V., Rodaev V.V., Umrikhin A.V., Konarev D.V., Litvinov A.L., Lyubovskaya R.N. Photogeneration of free charge carriers in the donor-acceptor complex TBPDA (C₆₀)₂ // Journal of Materials Chemistry. 2005. V. 15. № 6. P. 657-660.
- Konarev D.V., Saito G., Yudanova E.I., Lyubovskaya R.N., Kovalevsky A.Y., Coppens P., Lopatin D.V., Umrikhin A.V. Synthesis, crystal structure and photoconductivity of the first [60]fullerene complex with metal diethyldithiocarbamate: {CU^{II}(dedtc)₂}₂C₆₀ // Dalton Transactions: An International Journal of Inorganic Chemistry. 2005. № 10. P. 1821-1825/
- Konarev D.V., Lyubovskaya R.N., Khasanov S.S., Kovalevsky A.Yu., Lopatin D.V., Rodaev V.V., Saito G., Náfrádi B., Forró L. Supramolecular approach to the synthesis of [60]fullerene-metal dithiocarbamate complexes, {(M^{II}(R2dtc)2) X•L}•C₆₀ (M = Zn, Cd, Hg, Fe, and Mn; X = 1 and 2). The study of magnetic properties and photoconductivity // Crystal Growth and Design. 2008. V. 8. № 4. P. 1161-1172.
- Golovin Y.I., Lopatin D.V., Umrikhin A.V., Nikolaev R.K. Influence of a weak magnetic field on photoconductivity spectrum of C₆₀ single crystal // Fullerenes Nanotubes and Carbon Nanostructures. 2004. V. 12. № 1– 2. P. 81-85.
- Becke A.D. Density functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. V. 98. P. 5648-5653.
- Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti conelation energy formula into a functional of the electron density // Phys. Rev. B. 1988. V. 37. P. 785-789.
- Foresman J.B., Frisch A. Exploring Chemistry with Electronic Structure Methods. 2-nd ed. Wallingford, 1996. P. 302.
- Gaussian. Revision E. / M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,

G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople. Gaussian, Inc. Wallingford CT, 2004.

- Nalwa H.S. Handbook of Organic Conductive Molecules and Polymers. N. Y.: Wiley, 1997. P. 414.
- Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press, 1995. P. 965.
- Kazaoui S., Minami N., Tanabe Y., Byrne H.J., Eilmes A., Petelenz P. Comprehensive analysis of intermolecular charge-transfer exited states in C₆₀ and C₇₀ films // Phys. Rev. B. 1998. V. 58. P. 7689-7700.
- Lopatin D.V. Electronic Structures of Fullerene C₆₀ Derivative: DFT Modeling // NATO Science for Peace and Security Series C: Environmental Security. Carbon Nanomaterials in Clean Energy Hydrogen Systems – II. 2011. V. 2. P. 281-286.
- Lee C.H., Yu G., Moses D., Pakbaz K. Sensitization of the photoconductivity of conducting polymers by C₆₀. Photoinduced electron transfer // Phys. Rev. B. 1995. V. 48. P. 1789-179.
- Saricifici N.S., Smilowitz L., Heeger A.J., Wudl F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene // Science. 1992. V. 258. P. 1474-1476.
- Brabec C.J., Zerza G., Cerullo G., De Silvestri S., Luzzati S., Hummelen J.C, Saricifici S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time // Chem. Phys. Lett. 2001. V. 340. P. 232-236.
- Лопатин Д.В., Чиркин Е.С. Кристаллическая структура слоистых комплексов фуллеренов // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2010. Т. 15. Вып. 3. С. 955-957.
- Hill G., Kahn A., Soos Z. G. Charge-separation energy in films of π-conjugated organic molecules // Chem. Phys. Lett. 2000. V. 327. № 3. P. 181-188.
- Lopatin D.V. Defect structure of fullerene C₆₀ molecular complex // Gaudearnus. 2012. № 2. C. 240-242.

БЛАГОДАРНОСТИ: Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 10 02 00763а).

Поступила в редакцию 23 ноября 2012 г.

Lopatin D.V. MODELS OF PHOTOCONDUCTIVITY OF LAYERED MOLECULAR FULLERENE COMPLEXES

Based on the theoretical results on the electronic properties, the possible model of photoconductivity and related phenomena in layered molecular complexes based on C_{60} are considered. It is shown that the most probable mechanism of the formation of free charge carriers is the dissociation of CT-excitons. Exciton states are formed by intermolecular charge transfer from the HOMO and LUMO of nearby orbitals by overlapping π -orbitals of the donor and the fullerene molecules in the complex.

Key words: fullerenes; electronic properties; photoconductivity; DFT.